Tag Archives: belt

China OEM 15 Kw 20 HP Mute Stationary Belt Driven Air Compressor 12v air compressor

Product Description

0.5-80 M3/Min 6-40 Bar 5.5-400 Kw Electrical Stationary Industrial AC Power Direct Driven/Coupled Rotary Screw Air Compressors Advantages

1.DENAIR Enhanced energy saving screw air compressor reached the super energy saving level
 
2.Energy Efficient Index 1(EEI 1) approved according to GB19153-2009, the energy consumption is 10%~15% lower than EEI 2.
 
3.CHINAMFG air compressor design with 72 types of technology patent, real bigger air flow 
 
4.State-of-the-art screw element, original Germany CHINAMFG air end, ladvanced SAP profile design, superior Sweden CHINAMFG element bearings
 
5.CHINAMFG air compressdor dopts world-renowned components, such as Schneider electronics from France, DENAIR filters from Germany, Danfoss pressure sensor from Denmark, etc. contribute to guarantee the compressor longer service life.
 
6.Smart touch screen design and 0 pressure drop design
 
7.Higher efficiency cooling system and electrical motor
 
8.Stainless steel pipes, reasonable inner design, ensure long service life without maintenance.

Technical Parameters Of Energy Saving Rotary Screw Air Compressor 

Model Maxinmum working Capacity(FAD)* Installed motor power Driving mode& Noise Dimensions(mm) Weight Air outlet
pressure 50 HZ 60 HZ Cooling method level** pipe diameter
bar(g) psig m3/min cfm m3/min cfm kw hp   dB(A) L W H kg  
DA-5 7.5  109 0.80  28 0.80  28 5.5 7.5 Belt Driven 75 900 600 860 315 G3/4″
8.5  123 0.78  28 0.78  28 5.5 7.5 Air Cooling 75 900 600 860
DA-7 7.5  109 1.09  39 1.09  39 7.5 10   75 900 600 860 315 G3/4″
8.5  123 1.07  38 1.07  38 7.5 10   75 900 600 860
10.5  152 0.92  32 0.91  32 7.5 10   75 900 600 860
13.0  189 0.73  26 0.72  26 7.5 10   75 900 600 860
DA-11 7.5  109 1.66  59 1.66  59 11 15   75 1230 650 900 324 G3/4″
8.5  123 1.64  58 1.64  58 11 15   75 1230 650 900
10.5  152 1.45  51 1.45  51 11 15   75 1230 650 900
13.0  189 1.13  40 1.12  40 11 15   75 1230 650 900
DA-15 7.5  109 2.54  90 2.53  89 15 20 Direct Driven 75 1465 990 1345 453 G1-1/4″
8.5  123 2.51  88 2.50  88 15 20 Air Cooling 75 1465 990 1345
10.5  152 1.97  70 1.86  66 15 20   75 1465 990 1345
13.0  189 1.91  67 1.83  65 15 20   75 1465 990 1345
DA-18 7.5  109 3.04  107 3.65  129 18.5 25   75 1465 990 1345 453 G1-1/4″
8.5  123 3.03  107 3.63  128 18.5 25   75 1465 990 1345
10.5  152 3.00  106 2.38  84 18.5 25   75 1465 990 1345
13.0  189 1.91  67 2.36  83 18.5 25   75 1465 990 1345
DA-22 7.5  109 3.57  126 3.65  129 22 30   75 1465 990 1345 477 G1-1/4″
8.5  123 3.55  125 3.63  128 22 30   75 1465 990 1345
10.5  152 3.00  106 2.38  84 22 30   75 1465 990 1345
13.0  189 2.97  105 2.36  83 22 30   75 1465 990 1345
DA-30 7.5  109 5.28  187 4.49  159 30 40   85 1600 1250 1550 682 G1-1/2″
8.5  123 5.26  186 4.48  158 30 40   85 1600 1250 1550
10.5  152 5.21  184 4.47  158 30 40   85 1600 1250 1550
13.0  189 3.45  122 3.58  126 30 40   85 1600 1250 1550
DA-37 7.5  109 6.54  231 6.33  224 37 50   85 1600 1250 1550 728 G1-1/2″
8.5  123 6.52  230 6.30  222 37 50   85 1600 1250 1550
10.5  152 5.21  184 4.47  158 37 50   85 1600 1250 1550
13.0  189 5.16  182 4.43  156 37 50   85 1600 1250 1550
DA-45 7.5  109 7.67  271 7.79  275 45 60   85 1600 1250 1550 728 G1-1/2″
8.5  123 7.62  269 7.76  574 45 60   85 1600 1250 1550
10.5  152 6.46  228 6.24  220 45 60   85 1600 1250 1550
13.0  189 6.41  226 4.44  157 45 60   85 1600 1250 1550
DA-55 7.5  109 9.76  345 9.14  323 55 75   85 1876 1326 1700 1310 G2″
8.5  123 9.67  342 9.06  320 55 75   85 1876 1326 1700
10.5  152 7.53  266 7.74  273 55 75   85 1876 1326 1700
13.0  189 7.40  261 6.30  222 55 75   85 1876 1326 1700
DA-75 7.5  109 14.21  502 11.72  414 75 100   85 1876 1326 1700 1325 G2″
8.5  123 12.55  443 11.63  411 75 100   85 1876 1326 1700
10.5  152 9.51  336 11.43  404 75 100   85 1876 1326 1700
13.0  189 9.23  326 8.75  309 75 100   85 1876 1326 1700
DA-90(W) 7.5  109 16.62  587 17.01  601 90 120 Direct Driven 72 2450 1800 1700 2450 DN80
8.5  123 16.37  578 16.82  594 90 120 Air Cooling Or 72 2450 1800 1700
10.5  152 14.21  502 14.87  525 90 120 Water Cooling 72 2450 1800 1700
13.0  189 11.77  416 11.27  398 90 120   72 2450 1800 1700
DA-110(W) 7.5  109 20.13  711 19.10  674 110 150   72 2450 1800 1700 2500 DN80
8.5  123 20.05  708 19.06  673 110 150   72 2450 1800 1700
10.5  152 16.33  576 17.01  601 110 150   72 2450 1800 1700
13.0  189 14.11  498 14.68  518 110 150   72 2450 1800 1700
DA-132(W) 7.5  109 22.85  807 24.37  861 132 175   72 2450 1800 1700 2600 DN80
8.5  123 22.73  802 24.23  856 132 175   72 2450 1800 1700
10.5  152 19.88  702 18.95  669 132 175   72 2450 1800 1700
13.0  189 16.51  583 16.82  594 132 175   72 2450 1800 1700
DA-160(W) 7.5  109 26.92  950 27.90  985 160 215   78 2650 1700 1850 3200 DN80
8.5  123 26.86  949 27.76  980 160 215   78 2650 1700 1850
10.5  152 22.44  792 23.97  846 160 215   78 2650 1700 1850
13.0  189 19.63  693 18.82  664 160 215   78 2650 1700 1850
DA-185(W) 7.5  109 28.89  1571 30.53  1078 185 250   78 2650 1700 1850 3300 DN80
8.5  123 28.84  1018 30.44  1075 185 250   78 2650 1700 1850
10.5  152 25.11  886 27.46  970 185 250   78 2650 1700 1850
13.0  189 22.08  780 23.69  836 185 250   78 2650 1700 1850
DA-200(W) 7.5  109 31.88  1126 30.53  1078 200 270   80 3000 1950 2030 4750 DN100
8.5  123 31.82  1124 30.44  1075 200 270   80 3000 1950 2030
10.5  152 28.48  1006 30.22  1067 200 270   80 3000 1950 2030
13.0  189 25.00  883 27.07  956 200 270   80 3000 1950 2030
DA-220(W) 7.5  109 36.20  1278 37.22  1314 220 300   80 3000 1950 2030 4800 DN100
8.5  123 36.15  1276 37.17  1312 220 300   80 3000 1950 2030
10.5  152 31.71  1120 33.25  1174 220 300   80 3000 1950 2030
13.0  189 28.48  1006 27.07  956 220 300   80 3000 1950 2030
DA-250(W) 7.5  109 43.31  1529 42.87  1514 250 350   80 3000 1950 2030 4850 DN100
8.5  123 43.24  1527 41.30  1458 250 350   80 3000 1950 2030
10.5  152 36.03  1272 37.04  1308 250 350   80 3000 1950 2030
13.0  189 31.55  1114 33.15  1170 250 350   80 3000 1950 2030
DA-280(W) 7.5  109 46.59  1645 47.16  1665 280 375   85 3700 2300 2450 5200 DN125
8.5  123 46.53  1643 45.64  1612 280 375   85 3700 2300 2450
10.5  152 42.95  1516 42.56  1503 280 375   85 3700 2300 2450
13.0  189 35.89  1267 36.95  1305 280 375   85 3700 2300 2450
DA-315(W) 7.5  109 53.16  1877 50.88  1797 315 425   85 3700 2300 2450 6000 DN125
8.5  123 52.63  1858 50.83  1795 315 425   85 3700 2300 2450
10.5  152 43.05  1520 46.27  1634 315 425   85 3700 2300 2450
13.0  189 42.93  1516 40.32  1424 315 425   85 3700 2300 2450
DA-355(W) 7.5  109 63.37  2238 58.12  2052 355 475   85 4500 2500 2450 7000 DN125
8.5  123 63.16  2230 56.54  1997 355 475   85 4500 2500 2450
10.5  152 52.63  1858 51.57  1821 355 475   85 4500 2500 2450
13.0  189 43.79  1546 45.35  1601 355 475   85 4500 2500 2450
DA-400(W) 7.5  109 70.99  2507 61.72  2179 400 550   85 4500 2500 2450 8000 DN125
8.5  123 70.64  2494 59.72  2109 400 550   85 4500 2500 2450
10.5  152 52.63  1858 56.52  1996 400 550   85 4500 2500 2450
13.0  189 46.34  1636 51.35  1813 400 550   85 4500 2500 2450

*) FAD in accordance with ISO 1217 : 2009, Annex C: Absolute intake pressure 1 bar (a), cooling and air intake temperature 20 °C
**) Noise level as per ISO 2151 and the basic standard ISO 9614-2, operation at maximum operating pressure and maximum speed; tolerance: ± 3 dB(A)
***) EEI 1- Energy Effiency Index 1, which refers to enhanced energy saving series
Specifications are subject to change without notice.

DENAIR Factory & Product Lines

DENAIR Exhibition

We carefully selected for you the classic case

Enhanced Energy Saving Air Compressor in Oman

Project Name: Sandblasting in Muscat, Oman.

Product Name: 75KW 100HP Enhanced Energy Saving screw air compressor EEI 1 (Energy Efficiency Index 1) with air dryer, air receiver tank and air filters.

Model No. & Qty: DA-75+ x 1.

Working Time: From June, 2016 till now

Event: In June, 2015, 1 set of CHINAMFG enhanced energy saving air compressor system was installed in Muscat Oman. This is the first project finished by CHINAMFG distributor in Oman. Our partner Mr. Hari shared the photos at working site to us as a good starting. That means more and more CHINAMFG energy saving solutions will contribute to the industries in Oman in the near future. CHINAMFG air compressor factory and air compressor distributor will try the best to provide top quality products, cost effective solution and excellent service for local users in Oman. In order to ensure the most professional service, the distributor plans to send 2 service engineers to CHINAMFG factory in ZheJiang for training and learnin. We will update the news at that time.

FAQ

Q1: Are you factory or trade company?  
A1: We are factory.

Q2: What the exactly address of your factory? 
A2:No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China

Q3: Warranty terms of your air compressor machine? 
A3: Two years warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the air compressor? 
A4: Yes, of course.

Q5: How long will you take to arrange production? 
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days

Q6: Can you accept OEM orders? 
A6: Yes, with professional design team, OEM orders are highly welcome.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

In which industries are air compressors widely used?

Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:

1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.

2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.

3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.

4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.

5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.

6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.

7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.

8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.

9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.

These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.

China OEM 15 Kw 20 HP Mute Stationary Belt Driven Air Compressor   12v air compressorChina OEM 15 Kw 20 HP Mute Stationary Belt Driven Air Compressor   12v air compressor
editor by CX 2024-03-13

China wholesaler Belt Driven Rotary/Screw Air Compressor (SCR40M Series) air compressor oil

Product Description

Product Technical Description
 

Model :  Oil Injected Screw Air Compressor Belt Driven (M series)
Type:  Oil Injected Belt Driven Screw Air Compressor
Voltage:  380V/50HZ/3P, 220V/60HZ/3P, 400V/50HZ/3P, 415V/50HZ/3P or Customer′s Requirements
Working Pressure:  7~12.5 bar
Installed Motor Power:  4KW~75KW
Capacity: 0.58~13.3m3/min
Color:  Blue
Driven Method: Belt Driven
Air End: Original Ally-win Air End from Germany
Trademark:  SCR
Transport Package:  Standard Wooden Packing
Available Certificate:  CE, ISO, UL, ASME, GHOST
Origin:  ZheJiang , China
application:  Casting , Metal , Plastic , Rubber

Product Features

1. Sino-Japan technology cooperation, high reliability.

2. Big airend with low rpm for better performance an long life span.

3. High reliability components imported original from Germany, Swiss etc.

4. CE level protection design and manufacturing

5. Oversize cooler suitable for tropical area.

6. More than 10,000.00 units running around the world since 10years ago.

7. Intelligent PLC control.

8. Easy to do maintenance and service.

1.Automatic interlock control and operations management

Intelligent microcomputer controller, combined with pressure, temperature, current, signal, alarm with 12 important indicators and 13 comprehensive security protection measures with Chinese and English display optional and maintenance time limit remind. The RS485 communication interface can realize several machines joint control. Concise and comprehensive to keep the customer informed of the machines’ situation in time.

2.Safe and zero leakage connection

SCR have abandoned the traditional low cost hydraulic hose design. CHINAMFG use High-rigid pipes and flexible joint connection, avoiding bursts typically caused by ageing . Fluorine rubber type 0-ring offers a flexible seal preventing leakage.

3.heavy duty air filter with prefilter

A European imported air filter offers High efficiency and a low pressure drop.

4.CHINAMFG brand electrical components

5.American brand high efficiency transmission system


 

Model SCR40M-8 SCR40M-10 SCR40M-12.5
Capacity/Pressure(m3/min,/BAR) 4.81/8 4.32/10 3.74/12.5
TEFC Motor Power(KW) 30KW(40H.P)
Speed(r/min) 2952
Starting way Star-Delta
Volt(V) 380/400/415(220)
Motor safety grade IP54
Motor isolation grade F
Electrical Supply 380(400,415)V/50Hz/3Phase, 220V/60HZ/3P
Outlet Temperature(ºC) ≤ Environment Temperature+10ºC
Driven way Belt Driven
Noise level at 1 meter 73±3dB(A)
Cooling method Air cooling
Oil content ≤3 ppm
Outlet Connection Rc 1″
Dimension Length(mm) 900
Width(mm) 1150
Height(mm) 1350
Weight(KG) 640

Product Categories

Advantages

Application

About SCR

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Performance: Low Noise
Drive Mode: Electric
Configuration: Stationary
Application: Air Power
High Quality: Good Performance
Save Energy: Environment-Friendly
Customization:
Available

|

air compressor

Are there special considerations for air compressor installations in remote areas?

Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:

1. Power Source:

Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.

2. Environmental Conditions:

Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.

3. Accessibility and Transport:

Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.

4. Maintenance and Service:

In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.

5. Fuel and Lubricants:

For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.

6. Noise and Environmental Impact:

Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.

7. Communication and Remote Monitoring:

Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.

By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China wholesaler Belt Driven Rotary/Screw Air Compressor (SCR40M Series)   air compressor oilChina wholesaler Belt Driven Rotary/Screw Air Compressor (SCR40M Series)   air compressor oil
editor by CX 2024-02-02

China Custom Mg High Pressure Air Compressor 7.5kw Belt Driven Piston Air Compressor best air compressor

Product Description

Product Description

Product Parameters

 

MG-1301 power  2.2KW/3HP
tank 80L/21GAL
pressure 8bar/115psi
capacity 250L/min
MG-1302 power  4KW/5.5HP
tank 120L/21GAL
pressure 8bar/115psi
capacity 600L/min
MG-1303 power  3KW/4HP
tank 110L/29GAL
pressure 8bar/115psi
capacity 360L/min
MG-1304 power  5.5KW/7HP
tank 160L/42.3GAL
pressure 8bar/115psi
capacity 670L/min
MG-1305 power  7.5KW/10HP
tank 190L/50.2GAL
pressure 8bar/115psi
capacity 970L/min
MG-1306 power  7.5KW/10HP
tank 300L/79GAL
pressure 8bar/115psi
capacity 1000L/min

Detailed Photos

Configuration

Portable / Stationary, We support customized services, and our commitment to quality and innovation enables us to provide diverse products to meet the specific needs of various industries.

Certifications

 

Company Profile

 

Packaging & Shipping

Q1: Why Choose us?
A: Our products are all qualified by CE & ISO 9001. Our company introduces the advanced technology of German screw machine, adhering to the German industrial design concept and rigorous manufacturing process, specializing in CHINAMFG design, production and sales enterprises. We have 10 years exporting experience, which has helped us win more than 50 loyal foreign agents. We warmly welcome your small trial order for quality or market test.

Q2: Can you do OEM and ODM?
A: Yes, OEM and ODM are both available for us. With the requirements customization of the material, colors, style, the basic quantities will be advised after we discussed together.

Q3: Which shipping way can you provide?
A: We can provide shipping by sea, by air , by express and etc. according to customer requirements.

Q4: How to place order?
A: When you are ready to order, please contact us for confirm the suitable solution & plan & model. What cannot be ignored is you should provide a copy purchase order to ensure that your order is processed properly.

Q5: How about your after-sales service?
A: 1. Provide customers with installation and commissioning online instructions.
2.Prepare and Well-trained engineers available to overseas service within 1 year.
 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 1 Year
Lubrication Style: Oil-less
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Customization:
Available

|

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China Custom Mg High Pressure Air Compressor 7.5kw Belt Driven Piston Air Compressor   best air compressorChina Custom Mg High Pressure Air Compressor 7.5kw Belt Driven Piston Air Compressor   best air compressor
editor by CX 2023-12-22

China manufacturer Screw Air Compressor Belt Series High Efficiency Ariend Designed for Safety Transmission Belts 2023 air compressor portable

Product Description

Q1: What information do I need to provide to get the suitable machine?
1. How much air delivery capacity ( Unit:CFM or M3/Min )
2 How much working pressure ( Unit:PSI, Bar or Mpa )
3.What is the voltage and frequency of my country of residence ( V/Hz )
4. Whether I need other accessories such as air tank, filters and/or air dryers.
Tell us the answer, we will offer scheme for you!

Q2: What are the general unit conversion?
1bar = 0.1Mpa = 14.5psi 1m³/min = 35.32cfm 1KW = 1.34HP

Q3: Are you factory or trading company?
We are factory. Our factory is located in 39 Xihu (West Lake) Dis. Rd, HangZhou, ZHangZhoug

Q4: Which trade term can you accept?
FOB, CIF, CFR, EXW, etc.

Q5: How long will you take to arrange production?
15 days for Regular Products, 35 days for Customizing Models

SPECIFICATION

MODEL LZN-20-8
Ambient Temperature -5ºC to +45 ºC
Max Pressure (bar) 8
Air Delivery (m3/min) 2.3 
Compression Stage Single Stage Compression
Cooling Method Air Cooled
Discharge Temperature (ºC) ≤ 75ºC
Oil  Cotent (ppm) ≤3
Transmission Method Belt Driven
Sound Level dB(A) 66±3
Lubricating Oil Amount 3.5L
Motor Power 15KW/20HP
Motor Level Of Protection  IP55
Voltage 380V/3ph/50Hz
Dimensions (mm) 1820×800×1760(L*W*H)
Weight 590KG
Discharge Outlet Thread 3/4”

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Installation Type: Movable Type
Type: Twin-Screw Compressor
Dryer Spec: Built-in 1.5m3/Min Capacity
Samples:
US$ 1450/set
1 set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China manufacturer Screw Air Compressor Belt Series High Efficiency Ariend Designed for Safety Transmission Belts 2023   air compressor portableChina manufacturer Screw Air Compressor Belt Series High Efficiency Ariend Designed for Safety Transmission Belts 2023   air compressor portable
editor by CX 2023-12-05

China high quality Compressed Air Compressors 7.5kw 10 HP Belt Driven Screw Air Compressor for Duct Machine Vsc-15A air compressor price

Product Description

Product Description

Compressed Air Compressors 7.5KW 10 HP Belt Driven Screw Air Compressor For Duct Machine VSC-15A
 

(1) Electric: 3PH, 220V/380V/450V,50Hz/60Hz
(2) Color: Blue/Green/Red/Grey/Yellow/Black
(3) Warranty: 5 years for whole set (except air filter oil filter oil separator,  3 years for air end)

Detailed Photos

 

Product Parameters

Model VSC-15A
Power 7.5 KW /10HP
Pressure 0.7/0.8/1.0/1.25Mpa
Power/KW/HP 11kw/15HP
Capacity/ M³/min 1.7/1.5/1.4/1.2 m3/min 
Electric 3PH, 220V/380V/450V,50Hz/60Hz
Noise /db(A) 68
Dimensions 1050*700*1000 mm(L*W*H)
Weight 300kgs
Color Blue/Green/Red/Grey/Yellow/Black
 Warranty  5 years for whole set (except air filter oil filter oil separator, 3 years for air end)

Packaging & Shipping

Standard Export package

Company Profile

We are manufacturer and wholesaler of Automotive Equipment, experience over 10+ years. Including Autobody frame machine, Painting booth, Car lifts, wheel alignment, tyre changer, balancer. Jacks, AC machine, Baking lamp, Welding spotter… We sell standard products to final users, and we offer shop design solutions for auto body shop starter/owner and OEM for world whole seller and distributors.

Our Advantages

Our sales team can offer 24H x 7D online consultation service We make sure order products qualified, test before delivery, well packaged with professional shipping. Most of our products with 3 years warranty and whole life after sale service.We offer competitive price with quantity order. We take care every inquiry and treat it with patience, we aim to be best buy of automotive equipment supplier!

FAQ

 

After-sales Service: 5years
Warranty: 1 Years After Sales
Flow: Contra-Flow
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

What is the role of air compressors in manufacturing and industrial processes?

Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:

1. Pneumatic Tools and Equipment:

Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.

2. Automation and Control Systems:

Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.

3. Air Blowing and Cleaning:

Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.

4. Air Separation and Gas Generation:

Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.

5. HVAC Systems:

Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.

6. Air Compression for Storage and Transport:

Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.

7. Process Instrumentation:

Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.

8. Material Handling and Pneumatic Conveying:

In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.

Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China high quality Compressed Air Compressors 7.5kw 10 HP Belt Driven Screw Air Compressor for Duct Machine Vsc-15A   air compressor priceChina high quality Compressed Air Compressors 7.5kw 10 HP Belt Driven Screw Air Compressor for Duct Machine Vsc-15A   air compressor price
editor by CX 2023-11-18

China factory Heavy Duty 7.5kw 10HP 300 Liter Belt Drive Piston Air Compressor manufacturer

Product Description

Belt Air Compressor
Stock in China, Africa, UAE, Singapore

MODEL V-0.67/8-300L W-0.97/8-300L W-0.97/8-500L
MOTOR POWER 4KW 380V 50HZ 7.5KW 380V 50HZ 7.5KW 380V 50HZ
FLUX(L/MIN) 0.67 0.97 0.97
MAX.PRESSURE 8BAR 8BAR 8BAR
TANK VOLUME 300L 300L 500L
PACKAGE SIZE 1550X525X1120MM 1560X555X1170MM 1940X710X1230MM
N.W/G.W 141KG/170KG 185KG/214KG 232KG/275KG
  1. SAVE 15% FREICHT COST
     
    Completely new compact design saved approximately 15% package size, and significantly reduce freight. Honeycomb box package to nicely protect machine and save space.
     
  2. HIGH SAFETY VESSEL
     
    Modern and advanced automatic electrical production line promise excellent quality.
     
    Imported LINCOLN welding machine guarantees the smooth welding without undercut.
     
    Weekly hydrostatic burst test uses 5 times design pressure to check steel quality and welding safety.
     
    The pressure vessel is separately equipped with CE certificates from certification authority-TuV.
     
  3. GOOD QUALITY MOTOR
     
    10%-30% more sheet motor staor and rotor. 15% lower-voltage start-up suitable to many areas. Temperature rises95K to support long time working.
     
  4. FILLING TIME 10% QUICKER THAN COMMON COMPRESSOR
     
    Bold discharge pipe design with inner diameter of 12mm to short the filling time
     
  5. INDUSTRIAL DESIGN PUMP&FULLY-ENCLOSED COVER
     
    Original Italian design of the pump is quite different from the other companies, and of high reorganization.
     
    Fully-enclosed Cover prevent the customers from risks

HangZhou CHINAMFG Machinery Co., Ltd., founded in 2008, is an integrated enterprise specilizing in the design, production, sales, and service of auto maintenance equipment. We not only sell products, but also provide project package services, including project layout design, one-stop purchasing, installation and training, have established cooperative relations with many demestic and foreign customers.

We have operations and experience centers in Africa, the Middle East, and Singapore that provide localized services.

Haosail’s products are passed JINGRUI TEST CENTER’s quality management, which can achieve quality traceability and make customers feel at ease.

Our philosophy: Looking CHINAMFG to the establishment of cooperation with customers, including product sales agent, project contract supporting. Haosail, your auto-repair partner from zero to success.

Q: Why to choose Haosail?

1. Compared to the factory which can only provide single product, we can offer you one-stop purchasing, provide whole set of equipment and turnkey solution for your garage.  
 
2. Compared to normal trading company, we have abroad sales stores and professional after-sale team. You don’t need to worry about our company strength, equipment installation and maintenance problems.
 
3. Compared to normal sales company, we have our LOGO on all of our equipment, Uniform color, if you want to start your own business or act as a product agent, we are the best solution for your investment.

Contact person
Leo sales manager
 
 
 

After-sales Service: Local Service in Dubai and Maputo
Warranty: 12 Month
Classification: Variable Capacity
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Are there special considerations for air compressor installations in remote areas?

Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:

1. Power Source:

Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.

2. Environmental Conditions:

Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.

3. Accessibility and Transport:

Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.

4. Maintenance and Service:

In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.

5. Fuel and Lubricants:

For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.

6. Noise and Environmental Impact:

Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.

7. Communication and Remote Monitoring:

Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.

By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.

air compressor

What is the role of air compressors in manufacturing and industrial processes?

Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:

1. Pneumatic Tools and Equipment:

Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.

2. Automation and Control Systems:

Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.

3. Air Blowing and Cleaning:

Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.

4. Air Separation and Gas Generation:

Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.

5. HVAC Systems:

Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.

6. Air Compression for Storage and Transport:

Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.

7. Process Instrumentation:

Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.

8. Material Handling and Pneumatic Conveying:

In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.

Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.

air compressor

How do you choose the right size of air compressor for your needs?

Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:

1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.

2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.

3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.

4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.

5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.

6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.

7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.

8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.

By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.

China factory Heavy Duty 7.5kw 10HP 300 Liter Belt Drive Piston Air Compressor   manufacturer China factory Heavy Duty 7.5kw 10HP 300 Liter Belt Drive Piston Air Compressor   manufacturer
editor by CX 2023-11-06

China best 3HP Small Size Belt Driven Air Compressor for Garage lowes air compressor

Product Description

Air Compressor
Stock in Africa,UAE,Singapore

Model HP KW Speed
(RPM)
Capacity
(L/min)
Max Pressure
(Bar)
Tank
(L)
Package
(L*W*H mm)
Weight
(KG)
LSI2070/100 3 2.2 1050 300 8 100 1310*500*880 117
  1. SAVE 15% FREICHT COST
     
    Completely new compact design saved approximately 15% package size, and significantly reduce freight. Honeycomb box package to nicely protect machine and save space.
     
  2. HIGH SAFETY VESSEL
     
    Modern and advanced automatic electrical production line promise excellent quality.
     
    Imported LINCOLN welding machine guarantees the smooth welding without undercut.
     
    Weekly hydrostatic burst test uses 5 times design pressure to check steel quality and welding safety.
     
    The pressure vessel is separately equipped with CE certificates from certification authority-TuV.
     
  3. GOOD QUALITY MOTOR
     
    10%-30% more sheet motor staor and rotor. 15% lower-voltage start-up suitable to many areas. Temperature rises95K to support long time working.
     
  4. FILLING TIME 10% QUICKER THAN COMMON COMPRESSOR
     
    Bold discharge pipe design with inner diameter of 12mm to short the filling time
     
  5. INDUSTRIAL DESIGN PUMP&FULLY-ENCLOSED COVER
     
    Original Italian design of the pump is quite different from the other companies, and of high reorganization.
     
    Fully-enclosed Cover prevent the customers from risks

HangZhou CHINAMFG Machinery Co., Ltd., founded in 2008, is an integrated enterprise specilizing in the design, production, sales, and service of auto maintenance equipment. We not only sell products, but also provide project package services, including project layout design, one-stop purchasing, installation and training, have established cooperative relations with many demestic and foreign customers.

We have operations and experience centers in Africa, the Middle East, and Singapore that provide localized services.

Haosail’s products are passed JINGRUI TEST CENTER’s quality management, which can achieve quality traceability and make customers feel at ease.

Our philosophy: Looking CHINAMFG to the establishment of cooperation with customers, including product sales agent, project contract supporting. Haosail, your auto-repair partner from zero to success.

Q: Why to choose Haosail?

1. Compared to the factory which can only provide single product, we can offer you one-stop purchasing, provide whole set of equipment and turnkey solution for your garage.  
 
2. Compared to normal trading company, we have abroad sales stores and professional after-sale team. You don’t need to worry about our company strength, equipment installation and maintenance problems.
 
3. Compared to normal sales company, we have our LOGO on all of our equipment, Uniform color, if you want to start your own business or act as a product agent, we are the best solution for your investment.

Classification: Variable Capacity
Job Classification: Reciprocating
Transmission Power: Dynamoelectric
Cooling Method: Air-cooled
Cylinder Arrangement Mode: Symmetrical Balance
Cylinder Stage: Single Stage
Customization:
Available

|

air compressor

Can air compressors be used for painting and sandblasting?

Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:

Painting:

Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:

  • Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
  • Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
  • Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.

Sandblasting:

Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:

  • Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
  • Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
  • Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.

When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.

Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China best 3HP Small Size Belt Driven Air Compressor for Garage   lowes air compressorChina best 3HP Small Size Belt Driven Air Compressor for Garage   lowes air compressor
editor by CX 2023-11-06

China high quality High Quality 1.5HP 50L Portable Piston Belt Driven Air Compressor lowes air compressor

Product Description

Product Description

 

 

HangZhou Shangyang Trading Co., Ltd.  is located in known as the “compressor,” said HangZhou. We specialize in the production of screw air compressor, oil-free air compressor, direct air compressor, belt drive air compressor, air compressor pump motor. Using the highest quality raw materials and components, standardized operating procedures and strict quality testing, it is our highest goal to provide all customers with satisfactory quality products and services.

We take “continue to create value for customers, and constantly pursue the material civilization and spiritual civilization of the strivers” as the business philosophy, and build the company into a CHINAMFG brand in the global air compressor industry.

After-sales Service: Overseas Third-Party Support Available
Warranty: 0ne Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Arrangement: Duplex Arrangement
Cylinder Position: Vertical

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

How are air compressors utilized in pneumatic tools?

Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:

Power Source:

Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.

Air Pressure Regulation:

Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.

Air Volume and Flow:

Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.

Tool Actuation:

Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.

Versatility:

One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.

Portability:

Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.

Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.

air compressor

In which industries are air compressors widely used?

Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:

1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.

2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.

3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.

4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.

5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.

6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.

7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.

8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.

9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.

These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.

China high quality High Quality 1.5HP 50L Portable Piston Belt Driven Air Compressor   lowes air compressorChina high quality High Quality 1.5HP 50L Portable Piston Belt Driven Air Compressor   lowes air compressor
editor by CX 2023-10-26

China Hot selling New Large Capacity Eco Friendly Best Seller Gas Air Belt Air Compressor 150L Compressors air compressor portable

Product Description

Product Description

DESCRIPTION

Lubricated compressor is a versatile compressor, which is doing a good job at a lot of works

Automatic and manual start.

Various compressed-air tools can be operated quickly and without tools.

Engine cover with thermal protection against overheating.

Pressure adjustable,can be set precisely with the pressure reducer, displayed on the gauge.

Copper discharge tubes and single phase motor with copper coils for durability.

FEATURES/BENEFITS

Powerful, safe, long life, and low rpm

High efficiency for heavy-duty usage

High efficiency for heavy-duty usage

Fit for indoor decoration and craftsmen

 

Product Parameters

SPECIFICATION

CODE NO.     842203
MODEL HV-2051/150

POWER (KW/HP)

1.1/1.5

CYLINDER ( MM/PIECE) 51×2
SPEED(R.P.M) 1030
PRESSURE(BAR/PSI) 8/115
CAPACITY(L/Min) 170

AIR TANK (L)

150

WEIGHT (KGS)

85

DEMENSION (MM)

                       1270*490*940

 

Installation Instructions

 

Company Profile

Q: Are you a manufacturer or a trading company? 
A: We are an over 30 years experienced manufacturer of angle grinders, vibrators, welding machines, air compressors, cut-off machines, drill presses, etc.

Q: How is your quality control?
A: We have QA & QC department to make sure qualified products us.
income raw material inspection and first unit sample confirmed by QA before assembling;  processing, duration & performance testing carried out by QC before packing by 100%;  
finished products will be sampling survey at 18-25% before shipping.

Q: What is the package for your products? 
A: We have a variety of packing for different items: Color box; brown box; Honeycomb box; wooden case. Or extra outer packing according to the client’s requirement.

Q: How about the leading time?
A: testing samples need 5-10 days to prepare, full container loading 20-30 days normally,  peak season or more than 20x40HQ containers will be 30-50 days.

Q: What’s your payment term? 
A: The general payment term we are working with is T/T, 20-30%  as a deposit, the balance before shipment or at sight the BL copy, other payment terms such as L/C  at sight more than that can be negotiable.

Q: How about the shipping cost?
A: For small quantity orders, the goods could be delivered to you via express couriers, such as DHL, FEDEX, and so on, we have longterm cooperation with them. If the order quantity is large, the goods would be shipped by sea. We’ll advise the way of shipping and quote the shipping cost for your checking in advance, you also can ship by your shipping agent.

Q: Do you also sell replacements for your machines? 
A: Yes, replacements for our products are available. 3-5% free charge of easily damaged parts provided by us within a 1-2 years warranty,  order quantity up to 1000pcs per item, we can give 1 to 5pcs quick-weak replacements.

 

After-sales Service: 24 Online Service
Warranty: 12 Months
Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical
Samples:
US$ 190/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can air compressors be used for shipbuilding and maritime applications?

Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:

1. Pneumatic Tools and Equipment:

Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.

2. Painting and Surface Preparation:

Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.

3. Pneumatic Actuation and Controls:

Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.

4. Air Start Systems:

In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.

5. Pneumatic Conveying and Material Handling:

In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.

6. Air Conditioning and Ventilation:

Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.

These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.

air compressor

What is the energy efficiency of modern air compressors?

The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:

Variable Speed Drive (VSD) Technology:

Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.

Air Leakage Reduction:

Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.

Efficient Motor Design:

The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.

Optimized Control Systems:

Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.

Air Storage and Distribution:

Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.

Energy Management and Monitoring:

Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.

It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.

Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.

air compressor

What maintenance is required for air compressors?

Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:

1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.

2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.

3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.

4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.

5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.

6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.

7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.

8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.

9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.

10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.

Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.

China Hot selling New Large Capacity Eco Friendly Best Seller Gas Air Belt Air Compressor 150L Compressors   air compressor portableChina Hot selling New Large Capacity Eco Friendly Best Seller Gas Air Belt Air Compressor 150L Compressors   air compressor portable
editor by CX 2023-10-20