Tag Archives: lowes air compressor

China Hot selling Cost-Effective Performance High Quality Medium High Pressure Air Compressor air compressor lowes

Product Description

Detailed Photos

Cost-Effective Performance High Quality Medium High Pressure Air Compressor

Description&Advantages

Product Descriptions:
High-pressure series compressors, medium-to-high pressure compressors for oil fields, general-purpose piston compressors, oil-free compressors of DW, VW, MZD, SF types, liquefied petroleum gas (LPG) circulation compressors, natural gas and gas bottle filling series compressors, and various types of pressure vessels. We can provide compressors with a discharge capacity ranging from 300 to 12000 nm³/h and discharge pressures from 0.2 to 45 MPa, suitable for compressing air, nitrogen, liquefied petroleum gas, coal gas, natural gas, carbon dioxide, propane, ethylene, ammonia, difluoroethane, and other mediem. With over 600 different models, our products are widely used in urban construction, petroleum, coal, geology, chemical, metallurgy, machinery manufacturing, medical, food and beverage, liquefied gas stations, natural gas stations, and other fields

ASC Compressor Factory are oil-free lubrication reciprocating piston compressors developed in collaboration with the German company CHINAMFG DEMAG. These models are known for their low energy consumption, minimal noise, reduced vibration, high reliability, and easy operation.

Each unit primarily consists of the compressor mainframe, electric motor, common base frame, air system, cooling system, lubrication system, instrument control system, drainage system, and electrical system. All components are generally installed on a single common base frame, which is then mounted on a concrete foundation, making it a fixed-type gas station. The connections between the equipment and the fixing points to the base are detachable, making transportation, installation, operation, and maintenance extremely convenient.

Advantages:
Our products, incorporating technology from Germany’s CHINAMFG Demag companies, exhibit high reliability. Wearable parts like gas valves and piston rings use products from Austria’s Hoerbiger company, with a lifespan exceeding 8000 hours. The system supports soft starting, allowing frequent start and stop cycles for the compressor.  It features a wide intake range for broad adaptability. The overall skid-mounted structure results in low noise and is easy to install in urban areas, leading to investment savings.
It is equipped with a CHINAMFG PLC control system for high automation, ABB soft start (or variable frequency), and features automatic shutdown with audible and visual alarms in case of faults

Product Parameters

 

Medium to High Compressor Parameter Sheet
No Model Medium Capacity   Inlet Pressure Outlet Pressure   Rotation Power    Cooling Method
nm3/h  MPa MPa  r/min KW  
1 DW-2.4/(18~25)-50 Raw Gas 2700 1.8~2.5 5 980 160 Water
2 DW-5.5/(13-15)-26 Nitrogen 4500 1.3~1.5 2.6 740 160 Water
3 VW-4.6/52 BOG 250 Atmospheric Pressure 5.2 740 75 Closed loop
4 DWF-7/(2-4)-30 Wellhead Gas 2100 0.2~0.4 3 740 200 Air
5 VWD-3.2/(0-0.2)-40 Biogas 200 0~0.02 4 740 45 Closed loop
6 DW-4/5-41 Exhaust Gas 1200 0.5 4.1 980 160 Water
7 VW-4.1/(36.8-44.7)-
(39.9-49.9)
Regenerated Gas 8865 3.68~4.47 3.99~4.99 980 132 Water
8 2VW-18/0.05-90 BOG 1100 0.005 9 980 250 Water
9 VW-4.8/48-54 Natural Gas 12000 4.8 5.4 980 132 Water
10 VW-2/120 Carbon Monoxide 1200 Atmospheric Pressure 12 740 37 Water
11 VW-2.5/120 Carbon Monoxide 1200 Atmospheric Pressure 12 740 45 Water

High-Pressure Compressor (Pipeline Blowing) Specification Table
No Model Medium Capacity   Inlet Pressure Outlet Pressure   Rotation Power    Cooling Method
m3/h  MPa MPa  r/min W
1 SF-10/250 Air 600 Atm 25 1330 258.5 (Diesel Motor) Air
2 SF-10/150 Air 600 Atm 15 1330 258.5 (Diesel Motor)
3 SF-7.5/250 Air 450 Atm 25 980 160 (Electric Motor)
4 SF-7.5/150 Air 450 Atm 15 980 132 (Electric Motor)
5 SF-8.5/250 Air 510 Atm 15 980 200 (Electric Motor)
6 W-10/60 Air 600 Atm 6 1330 132 (Electric Motor)

High-Pressure Compressor (Oilfield Membrane Nitrogen Generation) Parameter Table
Model Flow Rate Outlet Pressure   Air compressor form and series Form and series of nitrogen booster compressor Drive parameter Power    Membrane Module Qty
nm3/h MPa KW
MZD-300/250 300 25 Screw type single-stage V-type piston three-stage 90KW+55KW 300 4
MZD-300/350 300 35 Screw type single-stage V-type piston four-stage 90KW+55KW 300 4
MZD-300/250-C 300 25 Screw type single-stage V-type piston three-stage TBD234V6 / 4
MZD-300/350-C 300 35 Screw type single-stage V-type piston four-stage TBD234V6 / 4
MZD-600/250 600 25 Screw type single-stage V-type piston three-stage 185KW+132KW 500 8
MZD-600/350 600 35 Screw type single-stage V-type piston four-stage 185KW+132KW 500 8
MZD-600/250-C 600 25 Screw type single-stage V-type piston three-stage TBD234VB / 8
MZD-600/350-C 600 35 Screw type single-stage V-type piston four-stage TBD234VB / 8
MZD-900/250 900 25 Screw type single-stage V-type piston three-stage 250KW+185KW 800 12
MZD-900/350 900 35 Screw type single-stage V-type piston four-stage 250KW+185KW 800 12
MZD-1200/250 1200 25 Screw type single-stage V-type piston four-stage 315KW+250KW 880 16
MZD-1200/350 1200 35 Screw type single-stage V-type piston four-stage 315KW+250KW 880 16
MZD-1500/150 1200 15 Screw type single-stage V-type piston three-stage 440KW+220KW 880 20

Our Factory

Part of Customer Visit

Certifications & Testing

 

Related Product

 

FAQ

Q:Are you a factory?

A:Yes, we are indeed a factory. We specialize in manufacturing high-quality Air/Gas Compressors and are proud to be a primary source for these products.

Q:How long is your delivery time?
A:It varies depending on the specific situation. For our standard configuration compressors, the delivery time is around 30 days. For customized compressors, it usually takes about 30-45 days.

Q:What technical support do you offer?
A:We offer comprehensive technical support to our clients, including remote assistance for installation and commissioning processes. Additionally, we have a team of seasoned engineers ready to be deployed to international client locations for meticulous on-site debugging, installation, and post-installation services.

Q:What is your warranty period?
A:Our warranty policy is valid for a period of 18 months from the date of commissioning at the end customer’s site or 21 months from the date of receipt by the purchaser, whichever comes first. This comprehensive coverage is designed to ensure total customer satisfaction and the reliability of our products

Q:How do you package the compressors?
A:For smaller compressors, we utilize robust plywood boxes that conform to export specifications.
    For the larger units, we strategically place them in freight containers, implementing secure fastening methods to safeguard            against any potential damage during the shipping process.

Q:What are your payment terms?
A:Usually, the payment is made by T/T with a 30% down payment CHINAMFG confirmation of the Proforma Invoice (PI), and the balance is to be paid after inspection and before shipment. We accept both TT and L/C at sight.

Send message  Get product Offer & Brochure!!!

 ↓↓↓

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Local Teams
Warranty: 18 Months
Principle: Reciprocating Compressor
Application: Back Pressure Type, Intermediate Back Pressure Type, High Back Pressure Type, Low Back Pressure Type
Performance: Low Noise, Variable Frequency, Explosion-Proof
Mute: Mute
Samples:
US$ 40000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

What is the role of air compressor tanks?

Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

China Hot selling Cost-Effective Performance High Quality Medium High Pressure Air Compressor   air compressor lowesChina Hot selling Cost-Effective Performance High Quality Medium High Pressure Air Compressor   air compressor lowes
editor by CX 2024-05-15

China Custom Durable Use Wildly Popular Product 7.5kw 7bar 8bar Mini Air Compressor Pump Good Air Compression Efficiency lowes air compressor

Product Description

ZheJiang Xihu (West Lake) Dis. specializes in the R&D, manufacturing, sales and after sales service of compressors, which include oil-free air compressors, oil-injected air compressor and air end, special gas compressors and post-processing equipment etc, under the brand name “Xihu (West Lake) Dis.r”, “OFAC”.

OIL FREE SCROLL AIR COMPRESSOR
 

Model Motor Power
kw/hp
Air Flow 
L/min
Pressure
MPa
Dimension
(L*W*H mm)
Weight
kgs
AP1.5-8A 1.5/2 140 0.6-0.8 540*540*770 87
AP1.5-8B 540*540*1190 136
AP2.2-8A 2.2/3 240 540*540*770 93
AP2.2-8B 540*540*1190 142
AP3.7-8A 3.7/5 410 540*540*770 110
AP3.7-8B 540*540*1190 149
AP1.5-10A 1.5/2 120 0.8-1.0 540*540*770 87
AP1.5-10B 540*540*1190 136
AP2.2-10A 2.2/3 200 540*540*770 93
AP2.2-10B 540*540*1190 142
AP3.7-10A 3.7/5 340 540*540*770 110
AP3.7-10B 540*540*1190 149

 

Model Motor Power
kw/hp
Air Flow 
L/min
Pressure
MPa
Dimension
(L*W*H mm)
Weight
kgs
AP7.5-8A 7.5/10 820 0.6-0.8 1000*590*976 227
AP11-8A 11/15 1230 1050*590*1470 335
AP15-8A 15/20 1640 1250*740*1800 488
AP18.5-8A 18.5/25 2050 1235*740*1990 734
AP7.5-10A 7.5/10 680 0.8-1.0 1000*590*976 227
AP11-10A 11/15 1571 1050*590*1470 335
AP15-10A 15/20 1360 1250*740*1800 488
AP18.5-10A 18.5/25 1700 1235*740*1990 734

Model Motor Power
kw/hp
Air Flow 
L/min
Pressure
MPa
Dimension
(L*W*H mm)
Weight
kgs
AP5.5-C 5.5/7.5 610 0.6-0.8 660*750*1200 175
AP7.5-8C 7.5/10 800 180
AP11-8C 11/15 1220 1250*700*1171 338
AP15-8C 15/20 1640 350
AP18.5-8C 18.5/25 2040 1250*700*1602 540
AP22-8C 22/30 2440 558
AP30-8C 30/40 3280 1230*1700*1602 900
AP33-8C 33/45 3660 1080
AP45-8C 45/60 5000 1116

Model Motor Power
kw/hp
Air Flow 
L/min
Pressure
MPa
Dimension
(L*W*H mm)
Weight
kgs
AP22-8A 22/30 2460 0.6-0.8 1580*1235*1852 860
AP30-8A 30/40 3280 1000
AP37-8A 37/50 4100 1580*1235*1990 1470
AP22-8A 22/30 2040 0.8-1.0 1580*1235*1630 910
AP30-8A 30/40 2720 1580*1235*1990 1140
AP37-8A 37/50 3400 1470

 

TECHNICAL DATA
 
Model Power Pressure (bar) Air Flow (m3/min) Noise Level dBA Outlet Size Weight (kgs) Lubricating Water(L) Filter Element (B)-(Z) Dimension LxWxH (mm)
OF-7.5F 7.5kw 10hp 8 1.0 60 RP 3/4 400 22 (25cm) 1 1000*720*1050
OF-11F 11kw 15hp 8 1.6 63 460 1156*845*1250
OF-15F 15kw 20hp 8 2.5 65 RP 1 620 28 (50cm) 1 1306*945*1260
OF-18F 18.5kw 25hp 8 3.0 67 750 33 1520*1060*1390
OF-22F 22kw 30hp 8 3.6 68 840 33 1520*1060*1390
OF-30F 30kw 40hp 8 5.0 69 RP 11/4 1050 66 (25cm) 5 1760*1160*1490
OF-37F 37kw 50hp 8 6.2 71 1100 1760*1160*1490
OF-45S 45kw 60hp 8 7.3 74 RP 11/2 1050 88 1760*1160*1490
OF-45F 45kw 60hp 8 7.3 74 1200 1760*1160*1490
OF-55S 55kw 75hp 8 10 74 RP 2 1250 110 (50cm) 5 1900*1250*1361
OF-55F 55kw 75hp 8 10 74 2200 (50cm) 7 2350*1250*1880
OF-75S 75kw 100hp 8 13 75 1650 (50cm) 5 1900*1250*1361
OF-75F 75kw 100hp 8 13 75 2500 (50cm) 7 2550*1620*1880
OF-90S 90kw 125hp 8 15 76 2050 (50cm) 5 1900*1250*1361
OF-90F 90kw 125hp 8 15 76 2650 (50cm) 7 2550*1620*1880
OF-110S 110kw 150hp 8 20 78 DN 65 2550 130 (50cm) 12 2200*1600*1735
OF-110F 110kw 150hp 8 20 78 3500 130 3000*1700*2250
OF-132S 132kw 175hp 8 23 80 2700 130 2200*1600*2250
OF-160S 160kw 220hp 8 26 82 2900 165 2200*1600*2250
OF-185S 185kw 250hp 8 30 83 DN 100 3300 180 (50cm) 22 2860*1800*1945
OF-200S 200kw 270hp 8 33 83 3500 2860*1800*1945
OF-220S 220kw 300hp 8 36 85 4500 2860*2000*2300
OF-250S 250kw 340hp 8 40 85 4700 2860*2000*2300
OF-315S 315kw 480hp 8 50 90 5000 2860*2000*2300

          F– air cooling method     S– water cooling method

                           
                            The brand “OFAC, OFC” specializes in the R&D, manufacturing, sales and service of compressors,
                            oil-free compressors and air end, special gas compressors, various air compressors and
                            post-processing equipment, providing customers with High-quality, environmentally friendly and
                            efficient air system solutions and fast and stable technical services.

FAQ

                                Q1: Warranty terms of your machine?
                                A1: One year warranty for the machine and technical support according to your needs.

                                Q2: Will you provide some spare parts of the machines?
                                A2: Yes, of course.

                                Q3: What about product package?
                                A3: We pack our products strictly with standard seaworthy case. Rcommend wooden
                                      box.

                                Q4: Can you use our brand?
                                A4: Yes, OEM is available.

                                Q5: How long will you take to arrange production?
                                A5: Immediate delivery for stock products. 380V 50HZ we can delivery the goods within
                                      3-15 days. Other  voltage or other color we will delivery within 30-45 days.

                                Q6: How Many Staff Are There In your Factory?
                                A6: About 100.
 
                                Q7: What’s your factory’s production capacity?
                                A7: About 550-650 units per month.

                                Q8: What the exactly address of your factory?
                                A8: Our first workshop located in HangZhou, ZheJiang , second workshop located in
                                       HangZhou, ZheJiang ,  China.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Installation Type: Stationary Type
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China Custom Durable Use Wildly Popular Product 7.5kw 7bar 8bar Mini Air Compressor Pump Good Air Compression Efficiency   lowes air compressorChina Custom Durable Use Wildly Popular Product 7.5kw 7bar 8bar Mini Air Compressor Pump Good Air Compression Efficiency   lowes air compressor
editor by CX 2024-05-07

China Professional Movable Type Single Screw CHINAMFG Standard Packing Portable Air Price Compressor air compressor lowes

Product Description

Product Description

Product Features

1. The enlarged plastic air filter is designed to be used for more than 5000 hours with the filter element accuracy of 3 microns. Dry, heavy duty, long life design, easy to clean and replace.

2. SAE standard stainless steel pipe design, low resistance, strong corrosion resistance, superior performance, completely eliminate oil leakage, air leakage, and water leakage problems.

3. Adopting the most advanced host machine in China, adhering to the exquisite manufacturing technology of Germany, adopting the low-pressure and high-efficiency tooth shape with the highest efficiency, the optimized runner design, the big rotor, low speed, high efficiency and high reliability provide your air compressor with a powerful heart, thus achieving efficiency and energy-saving synchronization.

4. The enlarged horizontal structure cooler not only improves the cooler performance, but also facilitates the maintenance, thoroughly solving the unit high temperature problem

5. Increased oil and gas storage tank to ensure the safe and reliable operation.

6. Oversized fuel tank ensures all-day operation of diesel.

7. Oversized fuel filters ensure the cleanliness of diesel entering the engine. Extend the service life of diesel engine.

8. Super large, super strong walking system, strong bearing, and mobile flexibility.

Model

 

HF19/18(J)

HF20/18(J)

Compressor

Type

 

Screw two-stage compression air compressor

Screw two-stage compression air compressor

Gas displacement

m3/min

19

20

Discharge pressure

bar

18

18

Drive mode

 

Direct coupling, diesel engine driven

Direct coupling, diesel engine driven

Oil and gas tank volume

L

150

150

Lubricating oil capacity

L

90

90

Diesel engine

Brand

 

 

 

Model

 

6CTA8.3

6CTA8.3

Type

 

Liquid cooled, 4 stroke, direct injection

Liquid cooled, 4 stroke, direct injection

Air cylinder QTY

 

6

6

Rated power

kw

194

194

Rated rotation speed

rpm

1900

2200

Lubricating oil capacity

L

24

24

Cooling water consumption

L

70

70

Fuel tank volume

L

380

380

Dimension & weight

Length

mm

4200

4200

Width

mm

1950

1980

Height

mm

2100

2100

Net weight

kg

4000

4000

Outlet exhaust valve

 

1*G2″, 1*G1″

1*G2″, 1*G1″

Optional for preheater

Company Profile

FAQ

1. Are you a trading company or a manufacturer?
We are a professional manufacturer. Our factory mainly produces water well drilling rigs, core drilling rigs, down-the-hole drilling rigs, pile drivers, etc. The products have been exported to hundreds of countries around the world and enjoy a high reputation all over the world.

2. How is the quality of your machine?
Our products pass strict quality inspections before they leave the factory to ensure that they are qualified before they are shipped.

3. How to inspect the goods?
1) Support customers to come to the factory for on-site inspection.
2) Support customers to designate third-party companies to inspect goods.
3) Support video inspection.

4. Do you have after-sales service?
Yes, we have a dedicated service team that will provide you with professional technical guidance. If you need, we can send our engineers to your workplace and provide training for your employees.

5. How about quality assurance?
We provide a one-year quality guarantee for the main machine of the machine.

6. How long is your delivery cycle?
1) In the case of stock, we can deliver the machine within 7 days.
2) Under standard production, we can deliver the machine within 15-20 days.
3) In the case of customization, we can deliver the machine within 20-25 days.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support,Field Maintenance
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Water Cooling
Power Source: Diesel Engine
Structure Type: Open Type
Samples:
US$ 26000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What role do air dryers play in compressed air systems?

Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

1. Moisture Removal:

Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

2. Contaminant Removal:

In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

3. Protection of Equipment and Processes:

By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

4. Improved Productivity and Efficiency:

Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

5. Compliance with Standards and Specifications:

Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

What is the purpose of an air compressor?

An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:

1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.

2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.

3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.

4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.

5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.

6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.

Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.

China Professional Movable Type Single Screw CHINAMFG Standard Packing Portable Air Price Compressor   air compressor lowesChina Professional Movable Type Single Screw CHINAMFG Standard Packing Portable Air Price Compressor   air compressor lowes
editor by CX 2024-04-24

China high quality Parking Cooler Systems Scroll Engine Auto DC 12V 24V Car Conditioning Parts Electric Air Compressor air compressor lowes

Product Description

Product Description

 

Name Electric compressor
Type Scroll
Freon R134a
Displacement 18~27cc
refrigerant oil POE68 130ml
Weight 5.6kg
Power 12V:550W; 24V:850W
RPM 12V:1800rpm; 24V: 3000rpm

We have many types of air conditioners for your option, including rooftop type, split type, invisible type and so on.

Company Profile

Quality, responsibility and innovation, have always been what CHINAMFG Environment Technology Co., Ltd. Pursues.

With standard workshops over 35, 000 square meters, our factory covers an area of 80 acres, with 235 employees and 23 engineers. Concentrating on air solutions, we manufacture parking air conditioners, parking heaters, scroll and rotary compressors, DC generators and so on.

To ensure quality, we are equipped with a complete set of advanced equipment, including CNC machining, turning and milling compound machining, Mitutoyo three-coordinate measuring instrument, Flip-type impregnation equipment, automatic ultrasonic cleaning machine. Meanwhile advanced automotive electric air conditioning system environment simulation laboratories have been established. All products will go through 100% test according to ISO9001 and CE standards before launching market.

Our research and development team provides customization and after-sales support. New products will be launched every couple of months, showing the best appearance and most reliable function, leading the trend of the industry.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Tech Support
Warranty: 1 Year
Classification: Variable Capacity
Job Classification: Reciprocating
Transmission Power: Turbine
Cooling Method: Air-cooled
Samples:
US$ 150/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How are air compressors utilized in pharmaceutical manufacturing?

Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:

1. Manufacturing Processes:

Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.

2. Instrumentation and Control Systems:

Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.

3. Packaging and Filling:

Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.

4. Cleanroom Environments:

Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.

5. Laboratory Applications:

In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.

6. HVAC Systems:

Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.

By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China high quality Parking Cooler Systems Scroll Engine Auto DC 12V 24V Car Conditioning Parts Electric Air Compressor   air compressor lowesChina high quality Parking Cooler Systems Scroll Engine Auto DC 12V 24V Car Conditioning Parts Electric Air Compressor   air compressor lowes
editor by CX 2024-04-10

China OEM Direct Drive Air Pump, Air Compressor, Painting Small Industrial 24L Fittings Air Filter Silent Air Compressor air compressor lowes

Product Description

Product Description
24L lubricated compressor is a versatile compressor, which is doing a good job at a lot of works
Automatic and manual start.
Various compressed-air tools can be operated quickly and without tools.
Engine cover with thermal protection against overheating.
Pressure adjustable,can be set precisely with the pressure reducer, displayed on the gauge.
Copper discharge tubes and single phase motor with copper coils for durability.

Features & Benefits

The Pump head directly coupled to heavy-duty induction motor for reliable and quiet operation.
The 24 liter tank has therefore sufficient air reserves.
The oil lubrication pump saves the durability of the compressor.
The operator´s safety is optimally provided due to a non-return valve and a safety valve.
The condensate can be drained off the vessel comfortably and properly per drip cock.
The vibration-absorbing foot avoids vibrations and reduces noise.
The transport handle and 2 rubber wheels care for quick mobility and easy transport.
There is a 5-10 years warranty against rusting through of the tank.

Technical Data
 

Item Code 841301
Model HL-30L-BM
Supply  220V/110V
Power  1.1KW/1.5HP
Cylinder  Ø47mm*1PCS
Tank  30L
Pressure  8BAR/115PSI
Capacity  120L/min/4CFM
Speed 2800/R.P.M
Weight  20KGS
L*W*H 540*260*600MM
   

 

Cylinder Process 

Plant Birds-eye view 

FAQ

 

Q: Are you a manufacturer or a trading company? 
A: We are an over 30 years experienced manufacturer of angle grinders, vibrators, welding machines, air compressors, cut-off machines, drill presses, etc.

Q: How is your quality control?
A: We have QA & QC department to make sure qualified products us.
income raw material inspection and first unit sample confirmed by QA before assembling;  processing, duration & performance testing carried out by QC before packing by 100%;  
finished products will be sampling survey at 18-25% before shipping.

Q: What is the package for your products? 
A: We have a variety of packing for different items: Color box; brown box; Honeycomb box; wooden case. Or extra outer packing according to the client’s requirement.

Q: How about the leading time?
A: testing samples need 5-10 days to prepare, full container loading 20-30 days normally,  peak season or more than 20x40HQ containers will be 30-50 days.

Q: What’s your payment term
A: The general payment term we are working with is T/T, 20-30%  as a deposit, the balance before shipment or at sight the BL copy, other payment terms such as L/C  at sight more than that can be negotiable.

Q: How about the shipping cost?
A: For small quantity orders, the goods could be delivered to you via express couriers, such as DHL, FEDEX, and so on, we have longterm cooperation with them. If the order quantity is large, the goods would be shipped by sea. We’ll advise the way of shipping and quote the shipping cost for your checking in advance, you also can ship by your shipping agent.

Q: Do you also sell replacements for your machines? 
A: Yes, replacements for our products are available. 3-5% free charge of easily damaged parts provided by us within a 1-2 years warranty,  order quantity up to 1000pcs per item, we can give 1 to 5pcs quick-weak replacements

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Online Service
Warranty: 12 Months
Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical
Samples:
US$ 55/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can air compressors be used for shipbuilding and maritime applications?

Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:

1. Pneumatic Tools and Equipment:

Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.

2. Painting and Surface Preparation:

Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.

3. Pneumatic Actuation and Controls:

Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.

4. Air Start Systems:

In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.

5. Pneumatic Conveying and Material Handling:

In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.

6. Air Conditioning and Ventilation:

Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.

These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

What is the role of air compressor tanks?

Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

China OEM Direct Drive Air Pump, Air Compressor, Painting Small Industrial 24L Fittings Air Filter Silent Air Compressor   air compressor lowesChina OEM Direct Drive Air Pump, Air Compressor, Painting Small Industrial 24L Fittings Air Filter Silent Air Compressor   air compressor lowes
editor by CX 2024-04-04

China OEM 4930041 High Quality Air Compressor Air Pump 6L Isle Qsl Diesel Engine Parts OEM Factory Manufacture 5285437 3509DC2-010 lowes air compressor

Product Description

Product Description

HangZhou ZeQi Pump Industry and Manufacture has build 3 production line for produce water pump, oil pump, air compressor, which are suitable for the following engine type: 4BT3.3, 6BT5.9, 6CT8.3, L8.9, M11, NT855, K19, K38, K50, X15, FOTON, ISF, ISBE, ISDE, ISCE, ISLE, ISM11, ISX15, B3.3, QSB3.3, QSB5.9, QSB6.7, QSC8.3, QSL, QSM11, QSX15 and so on. 
ZeQi Enterprise Purpose: Quality First, Customer First, Customer satisfaction is our CHINAMFG pursuit.

Packaging & Shipping

1. Each oil pump in 1 single engine parts paper box
2. Each 8 or 10 pcs oil pump in 1 big paper box
3. Pallet, wooden box, container
4. Sea transport, air transport, land transport
 

 

Company Profile

 

Our Advantages

We are factory with more than 20 years manufacture and international business experience. 

FAQ

Question 1:
How to buy from us?
Please inform us the part number you need. We will quote the correct price and discuess details.
If you don’t know the part number, please provide parts name and engine series number,we will check the part number through professional system. Question 2:
How long is the delivery time?
Based on the order quantity, normally the  delivery time is 10 days.  
Question 3
How about Payment Methods?
We prefer T/T(30/70) payment method: 30 percent pre-payment as deposit, after goods ready, 70% payment before shipping. 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 6 Month
Warranty: 6 Month
Material: Steel
Certification: TS16949, ISO9001, CE, RoHS, E-Mark, COP, CCC
Payment Term: T/T
Delivery Term: 7-10 Days
Samples:
US$ 125/Piece
1 Piece(Min.Order)

|
Request Sample

air compressor

How are air compressors utilized in pharmaceutical manufacturing?

Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:

1. Manufacturing Processes:

Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.

2. Instrumentation and Control Systems:

Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.

3. Packaging and Filling:

Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.

4. Cleanroom Environments:

Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.

5. Laboratory Applications:

In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.

6. HVAC Systems:

Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.

By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China OEM 4930041 High Quality Air Compressor Air Pump 6L Isle Qsl Diesel Engine Parts OEM Factory Manufacture 5285437 3509DC2-010   lowes air compressorChina OEM 4930041 High Quality Air Compressor Air Pump 6L Isle Qsl Diesel Engine Parts OEM Factory Manufacture 5285437 3509DC2-010   lowes air compressor
editor by CX 2024-04-03

China supplier Textile Industry 415V 0.6MPa 110kw Direct Drive Screw Air Compressor air compressor lowes

Product Description


Product information

Direct Drive 415V 0.6mpa 110KW Screw air compressor For Textile industry

Model 120A 150A 175A 200A 250A 300A 350A 380A 425A
Power (KW) 90 110 132 160 185 220 250 280 315
Free air deliver 
/Discharge  pressure
  (m3/min/Mpa)
17.2/0.7 21.5/0.7 25.6/0.7 30.0/0.7 34.2/0.7 42.8/0.7 45.0/0.7 49.2/0.7 58.2/0.7
16.5/0.8 20.5/0.8 24.0/0.8 29.0/0.8 33.0/0.8 40.0/0.8 43.1/0.8 48.0/0.8 55.5/0.8
15.0/1.0 19.0/1.0 22.0/1.0 26.2/1.0 30.0/1.0 36.5/1.0 39.5/1.0 13.2/1.0 51.0/1.0
13.0/1.2  17.5/1.2 19.0/1.2 24.5/1.2 28.0/1.2 34.0/1.2 36.3/1.2 40.5/1.2 45.3/1.2
Lubricant(L) 72 90 110   150
Noise level(Db) 72±2 75±2   84±2
Drive method Direct drive
Electricity  (V/ph/Hz) 380/3/50
Starting method Y- △ Starter
Dimension: 
 length/width/height  (mm)
2200 2600 2600 2700 2700 3200 3200 3200 4200
1350 1450 1450 1700 1700 1950 1950 1950 2250
1850 2000 2000 2300 2300 2450 2450 2450 2350
Weight(kg) 2080 2850 3220 3850 4350 4650 5600 7900 9200
Air outlet diameter 
 (inch)
2″ DN65 DN85 DN100

Compressor features

1. Single screw with low noise, Super Silenced Enclosure
2. Elegant compact design. Fully open access door to inner
3. 100% Continuous duty operation. Load/ No Load operation
4. Machine was CE and UL certificated. Machines under ISO9001 quality management standard system
5. LCD control panel with easy use and read. PLC control for load/ no load and auto shut-off according to the air flow which save much energy
6. 1 year full machine warranty, 3years air end warranty.
7. Progressive Adaptive Control ( PAC ) Protection continuously monitors key operating parameters and adapts to prevent unexpected downtime
8. Sequential Cooling System, significantly improves efficency, serviceability improves efficiency, serviceability and noise level
9. V-Shield Technology, provides a totally integrated, leak-free design
10. AIRHORSE screw air compressor selling all over the world, we can supply different electricity 

such as: 

380V 50HZ 3PH
220V 60HZ 3PH
440V 60HZ 3PH
415V 50HZ 3PH
230V 60HZ 3PH
460V 60HZ 3PH

 

Techinical data

3. Our Services

For compressor After-sale Service

• Any questions or requests before, during or after sales, we would like to help you any time and will find you the best solution in 24 hours.

• Warranty: One year for the whole machine Genuine spare parts will be provided with best price.

• Over board engineer service is available.

 

Special Customized Service

1) Full OEM

• Quantity: at least 5 pcs

• In this plan, we will do all the changes (Color, name plate and logo) as your need, and will not charge extra fee.

 

2) Half OEM

• Quantity: no limit

• Under this program, we can make the necessary alteration (name plate and logo) but we will charge some extra fee for the name plate, as the name plate factory has the MOQ.

 

3) Logo OEM

• Quantity: no limit

• Only the logo will be changed to yours, and no extra fee will be charged.
 

10bar air compressor
10bar compressor
10bar compressor air
10bar compressor air screw
10bar compressor screw air
10bar screw air compressor
10bar screw compressor
10hp 7 bar pressure air compressur
10hp air compresor
10hp air compresor made in china
10hp air compressor
10hp air dryer
10hp air screw compressor
10hp compressor
10hp piston air compressor
10hp screw air compressor
10hp screw compressor
10hp screw type air compressor
10hp small air compressor with air dryer
11 kw screw compressor
110kw air compressor
110kw compressor
110kw screw air compressor
110kw screw compressor
115psi portable air compressor
116psi air compressor
116psi compressor

FAQ
1. who are you guys?
We are based in ZheJiang , China, start from 2018,sell to Southeast Asia(20.00%),South Asia(15.00%),South America(10.00%),Central America(10.00%),Mid East(10.00%),Eastern Europe(8.00%),North America(5.00%),Oceania(5.00%),Africa(5.00%),Western Europe(3.00%),Southern Europe(3.00%),Eastern Asia(2.00%),Northern Europe(2.00%),Domestic Market(2.00%). There are total about 11-50 people in our office.

2. how can you guarantee your product quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.what can I buy from you?
Screw Air Compressor/ Rotary Screw Air Compressor/ Air Compressor/ Screw Compressor/ Compressor Spare Parts etc

4. why should I buy from you not from other suppliers?
OEM manufacturer
Accept customized
Small MOQ
Short delivery time

5. what services can you provide?
Accepted Delivery Terms: FOB,CFR,CIF,EXW,FAS,CIP,FCA,CPT,DEQ,DDP,DDU,Express Delivery,DAF,DES;
Accepted Payment Currency:USD,EUR,JPY,CAD,AUD,HKD,CNY,CHF;
Accepted Payment Type: T/T,L/C,D/P D/A,MoneyGram,Credit Card,PayPal,Western Union,Cash,Escrow;
Language Spoken:English,Chinese,Spanish,Japanese,Portuguese,German,Arabic,French,Russian,Korean,Hindi,Italian /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Lubrication Style: Lubricated
Samples:
US$ 6200/Set
1 Set(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What role do air dryers play in compressed air systems?

Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

1. Moisture Removal:

Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

2. Contaminant Removal:

In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

3. Protection of Equipment and Processes:

By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

4. Improved Productivity and Efficiency:

Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

5. Compliance with Standards and Specifications:

Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

Can air compressors be used for automotive applications?

Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:

1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.

2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.

3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.

4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.

5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.

6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.

7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.

When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.

Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.

China supplier Textile Industry 415V 0.6MPa 110kw Direct Drive Screw Air Compressor   air compressor lowesChina supplier Textile Industry 415V 0.6MPa 110kw Direct Drive Screw Air Compressor   air compressor lowes
editor by CX 2024-03-28

China Standard Sz185s3cc Refrigeration Compressor Price Industrial Compressors Portable Air Compressor for Sale Philippines air compressor lowes

Product Description

 

 

Hermetic piston compressor, MT/Z medium and high temperature compressor specifications
Rated Performance R22,R407C-50HZ
Model Rated Performance* MT-R22 Rated Performance** MTZ-R407C
Capacity(W)  Input Power (KW)  Input current(A)  COP  (W/W) Capacity(W)  Input Power (KW)  Input current(A)  COP  (W/W)
MT/MTZ 18 JA 3881 1.45 2.73 2.68 3726 1.39 2.47 2.68
MT/MTZ 22 JC 5363 1.89 3.31 2.84 4777 1.81 3.31 2.64
MT/MTZ 28 JE 7378 2.55 4.56 2.89 6137 2.35 4.39 2.61
MT/MTZ 32 JF 8064 2.98 4.97 2.70 6941 2.67 5.03 2.60
MT/MTZ 36 JG 9272 3.37 5.77 27.5 7994 3.12 5.71 2.56
MT/MTZ 40 JH 1571 3.85 6.47 2.72 9128 3.61 6.45 2.53
MT/MTZ 44 HJ 11037 3.89 7.37 2.84 9867 3.63 6.49 2.72
MT/MTZ 50 HK 12324 4.32 8.46 2.85 11266 4.11 7.34 2.74
MT/MTZ 56 HL 13771 5.04 10.27 2.73 12944 4.69 8.36 2.76
MT/MTZ 64 HM 15820 5.66 9.54 2.79 14587 5.25 9.35 2.78
MT/MTZ 72 HN 17124 6.31 10.54 2.71 16380 5.97 10.48 2.74
MT/MTZ 80 HP 19534 7.13 11.58 2.74 18525 6.83 11.83 2.71
MT/MTZ 100 HS 23403 7.98 14.59 2.93 22111 7.85 13.58 2.82
MT/MTZ 125 HU 3571 10.66 17.37 2.85 29212 10.15 16.00 2.88
MT/MTZ 144 HV 34340 11.95 22.75 2.87 32934 11.57 18.46 2.85
MT/MTZ 160 HW 38273 13.39 22.16 2.86 37386 13.28 21.40 2.82
MTM/MTZ200 HSS 46807 15.97 29.19 2.93 43780 15.54 26.90 2.82
MTM/MTZ250HUU 6 0571 21.33 34.75 2.85 57839 20.09 31.69 2.88
MTM/MTZ288 HVV 68379 23.91 45.50 2.87 65225 22.92 36.56 2.85
MTM/MTZ 320 HWW 76547 26.79 44.32 2.86 74571 26.30 42.37 2.81

 

Rated Performance*High Efficiency CompressorR22-50HZ
Model Capacity/(W) Input Power (KW) Inputcuprret/(A) COP(W/W)
MT 45 HJ 10786 3.62 6.86 2.98
MT 51 HK 12300 4.01 7.86 3.07
MT 57 HL 13711 4.54 9.24 3.02
MT 65 HM 15763 5.23 8.81 3.01
MT 73 HN 17863 5.98 9.99 2.99
MT 81 HP 25718 6.94 11.27 2.93

R134a,R404A,R507-50Hz
 Model Rated Performance* R134A Rated Performance**R404A,R507-50HZ
Capacity(W)  Input Power (KW)  Input current(A)  COP  (W/W) Capacity(W)  Input Power (KW)  Input current(A)  COP  (W/W)
MT/MTZ 18 JA 2553 0.99 2.19 2.58 1865 1.2 2.47 1.56
MT/MTZ22 JC 3352 1.20 2.51 2.80 2673 1.56 2.96 1.71
MT/MTZ 28 JE 4215 1.53 3.30 2.75 3343 1.95 3.80 1.72
MT/MTZ 32 JF 4951 1.87 3.94 2.65 3747 2.28 4.51 1.64
MT/MTZ 36 JG 6005 2.13 4.09 2.81 4371 2.66 4.91 1.64
MT/MTZ 40 JH 6398 2.33 4.89 2.74 4889 3.00 5.36 1.63
MT/MTZ 44 HJ 6867 2.52 5.65 2.72 5152 3.16 6.37 1.63
MT/MTZ 50 HK 8071 2.88 5.50 2.80 6152 3.61 6.53 1.70
MT/MTZ 56 HL 9069 3.21 5.83 2.82 7001 4.00 7.07 1.75
MT/MTZ 64 HM 1571 3.62 6.96 2.86 8132 4.54 8.30 1.79
MT/MTZ 72 HP 11853 4.01 7.20 2.96 9153 4.99 8.64 1.84
MT/MTZ 80 HP 13578 4.63 8.45 2.93 10524 5.84 10.12 1.80
MT/MTZ 100 HS 15529 5.28 10.24 2.94 12571 6.83 12.16 1.76
MT/MTZ 125 HU 19067 6.29 10.80 3.03 15714 8.53 13.85 1.84
MT/MTZ 144 HV 23620 7.83 13.78 3.02 18076 9.74 16.25 1.86
MT/MTZ 160 HW 25856 8.57 14.67 3.02 25713 11.00 17.94 1.84
MTM/MTZ200 HSS 3571 10.45 20.28 2.94 23800 13.53 24.06 1.76
MTM/MTZ 250 HUU 37746 12.45 21.38 3.03 31121 16.88 27.43 1.84
MTM/MTZ288 HVV 46773 15.49 27.29 3.02 35779 19.28 32.18 1.86
MTM/MTZ 320 HWW 51169 16.98 29.06 3.01 40093 21.76 35.51 1.84

 

50HZ DATA  
Model  50Hz Nominal Cooling Capacity/Capacity Input Power COP E.E.R. c Displacement Displacement Injection flow d Net.W
TR W Btu/h KW W/W Btu/h/W cm³/rev m3/h dm3 kg
R22 Single Sm084 7 20400 69600 6.12 3.33 11.4 114.5 19.92 3.3 64
SM090 7.5 21800 74400 6.54 3.33 11.4 120.5 20.97 3.3 65
SM100 8 23100 79000 6.96 3.33 11.3 127.2 22.13 3.3 65
SM110 9 25900 88600 7.82 3.32 11.3 144.2 25.09 3.3 73
SM112 9.5 27600 94400 7.92 3.49 11.9 151.5 26.36 3.3 64
SM115 9.5 28000 95600 8.31 3.37 11.5 155.0 26.97 3.8 78
SM120 10 35710 157100 8.96 3.36 11.5 166.6 28.99 3.3 73
SM124 10 31200 106300 8.75 3.56 12.2 169.5 29.5 3.3 64
SM125 10 35710 157100 8.93 3.37 11.5 166.6 28.99 3.8 78
SM147 12 36000 123000 10.08 3.58 12.2 193.5 33.7 3.3 67
SM148 12 36100 123100 10.80 3.34 11.4 199.0 34.60 3.6 88
SM160 13 39100 133500 11.60 3.37 11.5 216.6 37.69 4.0 90
SM161 13 39000 133200 11.59 3.37 11.5 216.6 37.69 3.6 88
SM175 14 42000 143400 12.46 3.37 11.5 233.0 40.54 6.2 100
SM/SY185 15 45500 155300 13.62 3.34 11.4 249.9 43.48 6.2 100
SY240 20 61200 2 0571 0 18.20 3.36 11.5 347.8 60.50 8.0 150
SY300 25 78200 267000 22.83 3.43 11.7 437.5 76.10 8.0 157
SY380 30 94500 322700 27.4 3.46 11.8 531.2 92.40 8.4 158
R107C Single SZ084 7 19300 66000 6.13 3.15 10.7 114.5 19.92 3.3 64
SZ090 7.5 20400 69600 6.45 3.16 10.8 120.5 20.97 3.3 65
SZ100 8 21600 73700 6.84 3.15 10.8 127.2 22.13 3.3 65
SZ110 9 24600 84000 7.76 3.17 10.8 144.2 25.09 3.3 73
SZ115 9.5 26900 91700 8.49 3.16 10.8 155.0 26.97 3.8 78
SZ120 10 28600 97600 8.98 3.18 10.9 166.6 28.99 3.3 73
SZ125 10 28600 97500 8.95 3.19 10.9 166.6 28.99 3.8 78
SZ148 12 35100 119800 10.99 3.19 10.9 199.0 34.60 3.6 88
SZ160 13 38600 131800 11.77 3.28 11.2 216.6 37.69 4.0 90
SZ161 13 37900 129500 11.83 3.21 10.9 216.6 37.69 3.6 88
SZ175 14 45710 136900 12.67 3.17 10.8 233.0 40.54 6.2 100
SZ185 15 43100 147100 13.62 3.16 10.8 249.9 43.48 6.2 100
SZ240 20 59100 201800 18.60 3.18 10.9 347.8 60.50 8.0 150
SZ300 25 72800 248300 22.70 3.20 10.9 437.5 76.10 8.0 157
SZ380 30 89600 305900 27.60 3.25 11.1 431.2 92.40 8.4 158

Model Nominal Cooling Capacity 60Hz Nominal Cooling Capacity/Capacity Input Power maximum rated current COP  Displacement  Displacement  Injection flow Net.W
TR W Btu/h kW MCC COP W/W EERBtu/h/W cmVrev m3/h dm3 kg
R22 HRM032U4 2.7 7850 26790 2.55 9.5 3.08 10.5 43.8 7.6 1.06 31
HRM034U4 2.8 8350 28490 2.66 9.5 3.14 10.5 46.2 8.03 1.06 31
HRM038U4 32 9240 31520 2.94 10.0 3.14 10.7 46.2 8.03 1.06 31
HRM040U4  3.3 9710 33120 2.98 10 3.26 11.1 54.4 9.47 1.06 31
HRM042U4 35 10190 34770 3.13 11.0 3.26 11.1 57.2 9.95 1.06 31
HRM045U4 3.8 10940 37310 3.45 12 3.17 10.8 61.5 10.69 1.33 31
HRM047U4 3.9 11500 39250 3.57 12.0 3.23 11.0 64.1 11.15 1.33 31
HRM048U4 4 11510 39270 3.57 12.5 3.23 11 64.4 11.21 1.57 37
HRM051T4 4.3 12390 44280 3.67 13.0 3.37 11.5 68.8 11.98 1.57 37
HRM051U4 4.3 12800 43690 3.83 13 3.34 11.4 68.8 11.98 1.57 37
HRM054U4 4.5 13390 45680 3.97 13.1 3.37 11.5 72.9 12.69 1.57 37
HRM058U4 4.8 14340 48930 4.25 15 3.37 11.5 78.2 13.6 1.57 37
HRM060T4 5.0 14570 49720 4.28 15.0 3.40 11.6 81.0 14.09 1.57 37
HRM060U4 5.0  14820 5 0571 4.4 15 3.37 11.5 81 14.09 1.57 37
HLM068T4 5.7 16880 57580 5.00 15.0 3.37 11.5 93.1 16.20 1.57 37
HLM072T4 6.0  17840 6 0571 5.29 15 3.37 11.5 98.7 17.2 1.57 37
HLM075T4 6.3 18430 62880 5.37 16.0 3.43 11.7 102.8 17.88 1.57 37
HLM081T4 6.8 19890 67880 5.8 17 3.43 11.7 110.9 19.3 1.57 37
HCM094T4 7.8 23060 78670 6.80 21.0 3.39 11.6 126.0 21.93 2.66 44
HCM109T4 9.1 26690 91070 7.77 24 3.43 11.7 148.8 25.89 2.66 44
HCM120T4 10.0 29130 99390 8.51 25.0 3.42 11.7 162.4 28.26 2.66 44
R407C HRP034T4  2.8 7940 27080 2.68 9.5 2.96 10.1 46.2 8 1.06 31
HRP038T4 3.2 8840 30150 2.82 11 3.14 10.7 51.6 8.98 1.06 31
HRP040T4 3.3 9110 31080 3.14 11.5 2.9 9.9 54.4 9.47 1.06 31
HRP042T4 3.5 9580 32680 3.3 10 2.9 9.9 57.2 9.95 1.06 31
HRP045T4 3.8 1571 36890 3.58 12 3.02 10.3 61.5 10.69 1.33 31
HRP047T4 3.9 11130 37980 3.69 12 3.02 10.3 64.1 11.15          1.33 31
HRP048T4 4.0  11100 37880 3.35 12 3.31 11.3 64.4 1L21 1.57 37
HRP051T4 4.3 12120 41370 3.83 13 3.17 10.8 68.8 11.98 1.57 37
HRP054T4 4.5 12570 42880 3.97 12.5 3.17 10.8 72.8 12.66 1.57 37
HRP058T4 4.8 13470 45970 4.25 14.0 3.17 10.8 78.2 13.6 1.57 37
HRP060T4 5.0  13860 47280 4.26 15 3.25 11.1 81 14.09 1.57 37
HLP068T4 5.7 15700 53560 5.10 15.0 3.08 10.5 93.1 16.20 1.57 37
HLP072T4 6.0  16810 57350 5.16 15 3.26 11.1 98.7 17.17 1.57 37
HLP075T4 6.3 18040 61550 5.54 16.0 3.26 11-1 102.8 17.88 1.57 37
HLP081T4 6.8 18600 63470 5,66 17 3.28 11,2 110,9 19,30 1,57 37
HCP094T4 7.8 21590 73660 6.63 21.0 3.26 11.1 126.0 21.93 2.66 44
HCP109T4 9.1 25070 85550 7.77 24 3.23 11 148.8 25.89 2.66 44
HCP120T4 10.0 27370 93400 8.47 25.0 3.23 11.0 162.4 28.26 2.66 44
R410A HRH571U4 2.4 7120 24310 2.43 10 2.93 10 27.8 4.84 1.06 31
HRH031U4 26 7530 25710 2.67 10.0 2.82 9.62 29.8 5.19 1.06 31
HRH032U4 2.7 7670 26170 2.75 10 2.79 9.51 30.6 5.33 1.06 31
HRH034U4 2.8 8500 29000 2.90 10.0 2.93 10.0 33.3 5.75 1.06 31
HRH036U4 3 8820 30110 3.13 10 2.82 9.62 34.7 6.04 1.06 31
HRH038U4 3.2 9250 31560 3.35 12.0 2.76 9.41 36.5 6.36 1.06 32
HRH040U4 3.3 15710 34810 3.58 12 2.85 9.72 39.6 6.9 1.33 32
HRH041U4 3.3 10050 34300 3.43 12.5 2.93 10 39.3 6.8 1.57 37
HRH044U4 3.7 1 0571 36940 3.92 13.5 2.76 9.41 42.6 7.41 1.57 37
HRH049U4 4.1 12110 41320 4.04 13.5 2.99 10.22 47.4 8.24 1.57 37
HRH051U4 4.3 12860 43890 4.21 13 3.05 10.42 49.3 5.58 1.57 37
HRH054U4 4.5 13340 45510 4.41 15.0 3.02 10.32 52.1 9.07 1.57 37
HRH056U4 4.7 13830 47200 4.58 15 3.02 1031 54.1 9.42 1.57 37
HLH061T4 5.1 15210 51880 4.89 15.0 3.11 1061 57.8 10.10 1.57 37
HLH068T4  5.7 16880 57610 5.26 19 3.21 1096 64.4 11.21 1.57 37
HLJ072T4 6.0 17840 60900 5.56 19.0 3.21 11.0 68.0 11.82 1.57 37
HLJ075T4  6.3 18600 63490 5.77 18 3.22 11 70.8 12.32 1.57 37
HLJ083T4 6.9 20420 69690 6.28 19.0 3.25 Hl 78.1 13.59 1.57 37
HCJ090T4 7.5 22320 76190 7.19 19 3.11 10.6 86.9 15.11 2.66 44
HCJ105T4 8.8 26100 89090 8.25 25.0 3.16 10.8 101.6 17.68 2.66 44
HCJ120T4 10 29610 157180 9.53 27 3.11 10.6 116.4 20.24 2.66 44

 

Model HP Voltage
MLM019T5LP9 2.5 220-240V-1-50HZ
MLM571T5LP9 3 220-240V-1-50HZ
MLM026T5LP9 3.5 220-240V-1-50HZ
MLM015T4LP9 2 380-415V-3-50Hz&460V-3-60Hz
MLM019T4LP9 2.5 380-415V-3-50Hz&460V-3-60Hz
MLM571T4LP9 3 380-415V-3-50Hz&460V-3-60Hz
MLM026T4LP9 3.5 380-415V-3-50Hz&460V-3-60Hz
MLM030T4LC9 4 380-415V-3-50Hz&460V-3-60Hz
MLM038T4LC9 5 380-415V-3-50Hz&460V-3-60Hz
MLM045T4LC9 6 380-415V-3-50Hz&460V-3-60Hz
MLM048T4LC9 7 380-415V-3-50Hz&460V-3-60Hz
MLM058T4LC9 7.5 380-415V-3-50Hz&460V-3-60Hz
MLM066T4LC9 9 380-415V-3-50Hz&460V-3-60Hz
MLM076T4LC9 10 380-415V-3-50Hz&460V-3-60Hz
*MLM series general-purpose lubricating oil is AB alkyl benzene oil, the refrigerant is R22.
 
Model HP Voltage
MLZ019T5LP9 2.5 220-240V-1-50HZ
MLZ571T5LP9 3 220-240V-1-50HZ
MLZ026T5LP9 3.5 220-240V-1-50HZ
MLZ015T4LP9 2 380-415V-3-50Hz&460V-3-60Hz
MLZ019T4LP9 2.5 380-415V-3-50Hz&460V-3-60Hz
MLZ571T4LP9 3 380-415V-3-50Hz&460V-3-60Hz
MLZ026T4LP9 3.5 380-415V-3-50Hz&460V-3-60Hz
MLZ030T4LC9 4 380-415V-3-50Hz&460V-3-60Hz
MLZ038T4LC9 5 380-415V-3-50Hz&460V-3-60Hz
MLZ045T4LC9 6 380-415V-3-50Hz&460V-3-60Hz
MLZ048T4LC9 7 380-415V-3-50Hz&460V-3-60Hz
MLZ058T4LC9 7.5 380-415V-3-50Hz&460V-3-60Hz
MLZ066T4LC9 9 380-415V-3-50Hz&460V-3-60Hz
MLZ076T4LC9 10 380-415V-3-50Hz&460V-3-60Hz
*MLM series general-purpose lubricating oil is PVE ugly oil, refrigerant R404A/R134A/R507/R22

Archean refrigeration has been focusing on the refrigeration industry for more than 10 years. The compressors are sold all over the world and have been well received. The company has accumulated strong experience in the compressor market, rich technical support, and a satisfactory one-stop procurement solution. You can rest assured You don’t need to worry about this series, from placing an order to receiving the goods. We provide a complete solution to serve customers well, which is our purpose of hospitality.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Installation Type: Movable Type
Lubrication Style: Lubricated
Cylinder Position: Vertical
Model: Sz185s3cc
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China Standard Sz185s3cc Refrigeration Compressor Price Industrial Compressors Portable Air Compressor for Sale Philippines   air compressor lowesChina Standard Sz185s3cc Refrigeration Compressor Price Industrial Compressors Portable Air Compressor for Sale Philippines   air compressor lowes
editor by CX 2024-03-07

China Best Sales CHINAMFG 10HP 20HP 30HP 50HP 60HP 75HP 100HP Industrial Fixed Speed Pm VSD Inverter Screw Air Compressor lowes air compressor

Product Description

 

Product Parameters

ZAKF 7.5kw 10hp Industrial Fixed Speed Screw Air Compressor

Product Name

power frequency 10hp air compressor

Model

ZA-10

Working Pressure

7/8/10/12 bar

Coling Method

air cooling\water cooling

Voltage

380v50hz or custom

Noise

66+-2

Dimension

890*650*830MM

Weight

190KG

Outlet Size

G1/2

Product Description

Company Profile

 

Certification and Exhibitions

Packing & shipping

After Sales Service

Pre-Sales Service

* Inquiry and consulting support.
* Sample testing support.
* View our Factory.
* Supply of accessorise
* Information supply

After-Sales Service

* Training how to instal the machine, training how to use the machine.
* Engineers available to service machinery overseas.
* Machine maintenance
* Proposal of improvement

 

Customer Evaluation

FAQ & Contact Us

 

Q:Are you a factory or trade company?

A:We are a factory,we provide screw Air compressors,Air receivers,UltraFilters,Dryers,Electronic condensate drains and Oil/Water
separators.

Q:How to pay?
A:T/T and L/C,Western Union,Paypal.

Q:How about your monthly production?

A:8000sets/month.

Q: what’s the advantages of your company?

A:1. I have factory,the quality can be control. 2. the price is good 3. I have professional team 4. we can be your oem factory 5.
Excellent after service. 6. we have inverter compressor, it can save energy.

Q:How to package&delivery?
A:we will use standard wooden case to package and shipped after finishing payment.

Q:How many services you will provide about air compressor?
A:we will provie perfect before-sales and after-sales for each machine.

CONTACT US
Sales Manager:Grace

   

 

HangZhou City CHINAMFG Compressor Parts
Co.,LTD HONGKONG CHINAMFG INDUSTRY LIMITED

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Machine Maintenance
Warranty: 1year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: None
Customization:
Available

|

air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

How are air compressors utilized in pneumatic tools?

Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:

Power Source:

Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.

Air Pressure Regulation:

Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.

Air Volume and Flow:

Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.

Tool Actuation:

Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.

Versatility:

One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.

Portability:

Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.

Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.

air compressor

Can air compressors be used for automotive applications?

Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:

1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.

2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.

3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.

4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.

5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.

6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.

7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.

When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.

Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.

China Best Sales CHINAMFG 10HP 20HP 30HP 50HP 60HP 75HP 100HP Industrial Fixed Speed Pm VSD Inverter Screw Air Compressor   lowes air compressorChina Best Sales CHINAMFG 10HP 20HP 30HP 50HP 60HP 75HP 100HP Industrial Fixed Speed Pm VSD Inverter Screw Air Compressor   lowes air compressor
editor by CX 2024-01-31

China Best Sales Factory Custom Pm Frequency Conversion Micro Oil 8bar Air Compressor 100HP air compressor lowes

Product Description

Factory Custom PM frequency conversion micro oil 8bar air compressor 100hp 

Technical Parameters Of PM Variable speed screw air compressor:
 

Model

WZS-100EVA

Air Flow/Working pressure

13.2m3/min @ 8bar

11.6m3/min @ 10bar

Cooling type of COMPRESSOR

Air cooling

Cooling type of MOTOR

Air cooling

Driven method

Direct Driven

Start way

Soft VSD Start

VSD inverter

HOLIP / VEICHI

Exhaust Temp.

< ambient temp. +8 degrees

Oil content

<2ppm

Noise

70±2 dB(A)

Power

380VAC/3ph/0~200Hz

Motor power

75kw/100hp

Dimension

2150*1300*1700mm

Weight

1950kg

 

Model Power
(KW)
Pressure
(Bar)
Air flow
(m³/min)
Noise
dB(A)
Compression stages Outlet diameter
(Inch)
Dimension
(mm)
Weight
(kg)
L W H
WZS-15EVA 11 8 1.8 62±2 Single 1″ 1300 860 1030 380
10 1.6
WZS-20EVA 15 8 2.2 63±2 Single 1″ 1300 860 1030 480
10 2.0
WZS-30EVA 22 8 3.8 66±2 Single 1¼” 1380 850 1150 620
10 3.0
WZS-40EVA 30 8 5.0 68±2 Single 1¾” 1380 850 1150 680
10 4.4
WZS-50EVA 37 8 6.8 68±2 Single 1½” 1600 1000 1370 850
10 5.4
WZS-60EVA 45 8 8.0 68±2 Single 1½” 1600 1000 1370 880
10 6.8
WZS-75EVA 55 8 9.7 69±2 Single 2″ 1700 1270 1500 1350
10 8.6
WZS-100EVA 75 8 13.2 70±2 Single 2″ 2150 1300 1700 1650
10 11.6
WZS-125EVA 90 8 15.0 70±2 Single 2″ 2150 1100 1500 1950
10 14.6
WZS-150EVA 110 8 19.0 71±2 Single DN65 2550 1650 1850 2600
10 17.0
WZS-180EVA 132 8 23.0 72±2 Single DN65 2550 1650 1850 2880
10 20.0
WZS-200EVA 160 8 26.5 75±2 Single DN80 2950 1800 1850 3200
10 22.5

 

Before quotation:
1.Before quoting, what should users offer?
1).Discharge pressure (Bar, Mpa or Psi)
2).Air discharge/Air flow/Air capacity (m3/min or CFM)
3).Power supply (220/380V, 50/60Hz, 3Phase)

2.If I don’t know the pressure and air flow, what should I do?
1).Take the picture of nameplate, we will advise the suitable air compressor to you.
2).Tell us what industry you are, we can advise the suitable 1 (so as to air tank / air dryer / air filters).

High Efficiency PM Motor and Energy Saving
*With the high-performance permanent magnet material, PM motor won’t lose magnetism even under 120°c and can run for more than 15 years.
*No motor bearing: permanent magnet rotors is installed directly on the stretch out shaft of Male rotor. This structure doesn’t have the bearing and eliminates the motor bearing fault. 
*Comparing to normal variable speed motor, the permanent magnet synchronous motor performs with even better energy efficiency. Especially in the low-speed condition, it can still maintain a high motor efficiency.

SHIPPING
Delivery: time 5-25 working days after payment receipt confirmed(based on actual quantity)
packing:standard export packing. or customized packing as your
Professional: goods shipping forwarder.

FAQ
Q: OEM/ODM, or customers logo printed is available?
Yes, OEM/ODM, customers logo is welcomed.

Q:  Delivery date?
Usually 5-25 workdays after receiving deposit, specific delivery date based on order quantity

Q: what’s your payment terms?
Regularly doing 30% deposit and 70% balance by T/T, Western Union, Paypal, otherpayment terms also can be discussed based on our cooperation.

Q: How to control your quality?
We have professional QC team, control the quality during the mass production and inspectthe completely goods before shipping.

Q:  If we don’t have shipping forwarder in China, would you do this for us?
We can offer you best shipping line to ensure you can get the goods timely at best price.

Q: come to China before, can you be my guide in China?
We are happy to provide you orservice, such as booking ticket, pick up at the airport, booking hotel, accompany visiting market or factory

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Oil-less
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

What is the role of air compressors in manufacturing and industrial processes?

Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:

1. Pneumatic Tools and Equipment:

Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.

2. Automation and Control Systems:

Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.

3. Air Blowing and Cleaning:

Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.

4. Air Separation and Gas Generation:

Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.

5. HVAC Systems:

Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.

6. Air Compression for Storage and Transport:

Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.

7. Process Instrumentation:

Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.

8. Material Handling and Pneumatic Conveying:

In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.

Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.

air compressor

How is air pressure measured in air compressors?

Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:

1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.

2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.

To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.

It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.

When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.

Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.

China Best Sales Factory Custom Pm Frequency Conversion Micro Oil 8bar Air Compressor 100HP   air compressor lowesChina Best Sales Factory Custom Pm Frequency Conversion Micro Oil 8bar Air Compressor 100HP   air compressor lowes
editor by CX 2024-01-04